Biomolecular Interaction Analysis (BIA) Core Facility

Applications in SPR Binding Analysis

Facility Director: Munir Alam, Ph.D.
Facility Manager: Brian Watts, Ph.D.

Surface Plasmon Resonance

- SPR measures changes in refractive index at the surface
- In practice, measures changes in **mass** at the surface

Label-Free, Real-Time Detection
Surface Plasmon Resonance

\[K_D = \frac{k_{off}}{k_{on}} \]

BIACore

Biomolecular Systems

- Can measure protein interactions with
 - Proteins and peptides
 - DNA and RNA
 - Small molecules
 - Lipid membranes, micelles, and vesicles
 - Carbohydrates
 - Synthetic polymers
 - Viruses
 - Whole cells

- Samples can be purified or complex
 - For affinity/kinetics – SEC purified (>95%)
 - Cell culture medium
 - Clinical sera or bodily fluids
Experimental Considerations

1. **Immobilization**
 - How to functionalize a binding partner to the sensor chip?

2. **Binding**
 - What type of assay/design?

3. **Regeneration**
 - How to remove bound analyte without damaging ligand?

SPR Sensor Chips

- **Carboxymethylated Dextran**
 - Biocompatible and Robust
 - Low non-specific binding
 - Available in varying dextran lengths and CM density
 - CM3, CM4, **CM5**, CM7
 - C1 – Carboxylated gold (no dextran)

- **Direct Immobilization**
 - Reactive carboxyl handle
 - **Amine Coupling** – EDC/NHS
 - Thiol Coupling – Disulfide
 - Thiol Coupling – Maleimide
 - Aldehyde Coupling
SPR Sensor Chips

- **High-Affinity Ligand Capture**
 - Modify CM dextran w/ capture molecule
 - Streptavidin-Biotin (SA chip)
 - α-Fc or Protein A (Prot A chip)
 - α-His or NTA (NTA chip)
 - α-GST
 - α-FLAG
 - Applicable to any high affinity tag

- **Hydrophobic Adsorption**
 - Sensor Chip HPA – Alkanethiol gold
 - Lipid bilayers or monolayers
 - Sensor Chip L1 - Lipophilic residues on CM5
 - Captured vesicles or micelles

Direct vs. Capture

- **Direct Immobilization**
 - Immob. → Binding → Regeneration

- **Ligand Capture**
 - Immob. → Capture → Binding → Regeneration
Direct vs. Capture

- Direct Immobilization
 - Simple and Robust
 - Immob. level less flexible
 - Requires less ligand
 - Requires regeneration scouting

- Ligand Capture
 - More complex design
 - Can fine-tune ligand immob. level
 - Takes advantage of affinity tags
 - Regen. conditions may be known
 - Each cycle requires fresh ligand

Regeneration

- Injection of a buffer designed to disrupt bound complex
- Often a trial and error process to identify ideal conditions
 - Acidic: 10 mM Glycine-HCl (pH 1.5-3.0)
 - Basic: 1-100 mM NaOH
 - Ionic: 4 M MgCl₂, 5 M NaCl
 - Chaotrope: 2 M Guanidine-HCl, 1 M Urea
 - Detergent: ≤ 0.5% SDS, ≤ 0.5% Tween 20
 - Chelating: 20 mM EDTA
Regeneration

- Regeneration too weak
 - Incomplete analyte removal
 - Increasing baseline
 - Reduced binding response

- Regeneration too strong
 - Complete analyte removal
 - Loss of ligand activity
 - Reduced binding capacity

Experimental Considerations

1. Immobilization
 - Direct Immobilization vs. High Affinity Capture
 - Immobilization level
 - Low (Kinetics) vs. High (Screening or LMW Affinity)

2. Binding
 - Desired experimental outcome
 - Assay design
 - Protein purity and concentration
 - Protein quantity (~100 µg)

3. Regeneration
 - Mildest conditions necessary
 - Complex and surface ligand stability
BIACore

SPR Experiments

• Specificity and Screening
 • Yes/No Binding
 • Ranking of binding response
• Kinetics and Affinity
 • Multi-cycle or single-cycle
 • Direct binding
 • Steady-State Affinity
 • Solution-based Affinity
• Concentration
 • Surface Competition
 • Solution Inhibition
• Epitope Mapping
• Conformational Changes
• Thermodynamics

\[K_D = \frac{k_{off}}{k_{on}} \]

BIACore

BIA Core Facility

Biacore 3000 Biacore 4000 Biacore T200

Biacore S200 ForteBio Octet-RED96

gihilcare.com/biacore, fortebio.com
BIACore

BIA Core Facility

Biacore 3000

- Two (2) 3000s available
- Four (4) serial flow cells
- Simultaneous detection of up to 4 interactions per injection cycle
- Autosampler
- Sensitivity down to 10 RU

BIACore

BIA Core Facility

Biacore 4000

- Four (4) independent flow cells each equipped with 5 detection spots
- Simultaneous detection of up to 16 interactions per injection cycle
- Autosampler supports 96- and 384-well plates in 10-plate hotel
- Designed for high-throughput analyses
- Approved for clinically derived and/or infectious samples
BIA Core Facility

Biacore T200
- Four (4) serial flow cells
- Simultaneous detection of up to 4 interactions per injection cycle
- Autosampler supports 96- and 384-well plates
- Integrated degasser
- Sensitivity down to 1 RU allows detection of small molecule analytes

Biacore S200
- Four (4) serial flow cells
- Autosampler supports 96- and 384-well plates
- Integrated degasser
- Increased sensitivity below 1 RU allows for improved detection of small molecule analytes
- Specifically designed for high throughput screening of LMW analytes
BIACore
BIA Core Facility

ForteBio Octet-RED96
- Biolayer Interferometry (BLI)
- Generates similar results as SPR
- Ligand-coated biosensor tips submerged in a 96-well plate
- Parallel processing of up to 96 interactions
- No need for regeneration
- Crude sample compatibility

How to Utilize the BIA Core
- **Sample Submission**
 - Available for the 3000, 4000, S200, and BLI
 - Trained technicians will optimize experiments and complete data analysis.
- **Independent Use**
 - Available for the T200
 - Specialized training and support
 - Reserve T200 through CoreResearch@Duke
 - Available to researchers 24/7